摘要 当前,电力无线通信工程发展迅速。以LTE230为研究对象,阐述电力无线通信的现状,分析230MHz频段并就基于LTE230的电力无线通信专网技术要点进行详细探究。以期促进电力无线通信系统
摘要:当前,电力无线通信工程发展迅速。以LTE230为研究对象,阐述电力无线通信的现状,分析230MHz频段并就基于LTE230的电力无线通信专网技术要点进行详细探究。以期促进电力无线通信系统发展。
关键词:无线通信:LTE230:电网
0引言
配电网与人们生活密切相关,发展安全且高效的智能电网至关重要。当前,在通信业务领域,互联网宽带技术逐渐普及。LTE230系统是一种基于TD.LTE技术,并以230MHz电力专用频点为传输基础的通信系统。该系统能够有效增加容量,提升传输效率,保证业务数据传输的安全性和高效性…。因此,亟需对基于LTE230的电力无线通信专网进行深入研究。
推荐期刊:《通信与信息技术》以报道现代通信电源技术及电源领域新技术、新工艺、新产品为宗旨,向通信应用工程技术人员提供技术支持为目的,满足通信领域人员需求。
1电力无线通信的现状
随着科学技术的快速发展,无线网通信技术日渐完善。其主要优势体现在可在各种较为恶劣的环境下正常运行,灵活性与拓展性均较好,维护方便,具有极大的推广应用价值,有利于进一步提升我国通信服务水平。
现阶段,由于不少电力网络在建设初期未能够实施科学规范,存在国家电力通信体制较为混乱与通信性能较差问题,给现有光纤通信技术的发展造成一定的阻碍。因此,电力公司与相关机构均投入了大量的资金、人力与物力,不断研究与开发新型网络通信技术,尝试将各种先进的通信技术应用于电力领域中,以期进一步提高我国电力网络发展水平,为人们提供更加可靠的电力服务。
2230MHz频段
根据国家相关规定,在无线通信遥测、遥控与数据传输等业务的推广应用中,要求采用223.025~235.000MHz频段,共计12Mbit/s带宽与480个频点,规划为单频、双频组网频段。其中,2.5MHz频段为能源、军队、气象、地震、水利、地矿、轻工以及建设等行业专用。而1MHz(40个25kHz离散频点)配用于电力负荷监控,是授权频点最多的行业,其余9MHz可由不同行业根据自己的业务需求单独申请使用。
2013年工信部无函(2013)492号文件颁发,明确提出电力负控230MHz频谱资源使用政策;2016年工信部发布无函(2016]218号、219号文件颁发,支持3.5MHz频谱230MHz电力无线专网试点,为230MHz频谱带宽的推广应用提供先期测试。
3无线通信专网的实现技术
3.1载波聚合技术在无线通信系统应用过程中,系统分配的频点数量并不多,在传统的数传电台运行中,通常只有一个频点可以进行数据传输。通过将载波聚合技术应用于LTE230系统,当频带为离散的窄带时,能够将多个离散的信道作为成员载波,同时,还能够聚合分散的成员载波,统一分配给电力用户,以此产生高于原有窄带系统很多倍的传输宽带,提升宽带传输效果。与LTE.A系统相比,LTE230系统应用的载波聚合技术为混合形式,即在物理层中,同一个用户的子载波共用一个传输块,这样不仅能够加快数据传输效率,还能够提升频谱效率。子载波的数据流在MAC层中发生聚合,用户能够应用独立的传输块,因此,用户可以进行单独调制,有效提升调度控制水平。此外,载波聚合技术可以将多个成员载波进行聚合,且不需要再次调制编码方案或者设计物力信道,提升了LTE230系统的载波承载数据水平。
3.2正交频分多址技术
实际应用正交频分多址技术时需要调制OFDMA各子载波。由于可以采用FFT技术实现多个载波之间的重叠,可以做到时间、频率的同步,同时,由于该技术采用上行链路的功率控制形式,能够最大程度降低干扰,提升系统传输效率。在应用OFDMA多址技术时,需要使用载波间的保护频带,因而会在一定程度上影响频谱效率,对此,可运用正交频分多址技术将信道划分为多个信道,并结合各个信道的实际情况,合理分配传输功率,从而增加系统容量,提升频谱效率。
3.3自适应重传技术
自适应重传技术是一种先进的物理层技术,能够将自动重传请求与前向纠错进行有效结合。通过将其应用于系统运行中,可在一定的信道条件基础上改变传输效率,且应用效果不会受到暂态信道测量结果与时间的影响。同时,自适应重传技术可根据信道条件变化形式,选择合适的调制模式与编码方式。在LTE230系统实际应用中,高强度影响会对信道条件造成不良影响,而应用低阶调制模式,可以降低数据传输速度,保证数据传输的准确性。如果信道条件比较差,则可以应用高阶调制模式,增加频谱利用,促进传输效率的提升。
4电力无线通信专网在LTE230系统下的构建
4.1单基站覆盖的优势
鉴于电网分布范围广且布局分散,采用单基站覆盖形式可以有效减少相同覆盖面积下的基站数量,优化网络结构,有助于实现网络之间的无缝对接,强化网络覆盖。覆盖能力是检验通信网络性能的重要指标,对网络建设成本也有直接影响。因此,进行电力无线通信专网建设时需要重点考量覆盖能力。实际测试数据表明,230MHz频段的覆盖能力远远高出400MHz、1400MHz以及1800MHz等频段。LTE230系统的工作频段正是230MHz,其频谱呈现出25kHz窄带离散梳状分布的特点,通过对农村、郊区以及城区三种不同的工作环境实施仿真,可分析解调门限、干扰余量以及阴影衰落等方面的性能因素,得出LTE230系统的准确覆盖能力。LTE230覆盖半径如表1所示。
4.2LTE230系统在电力业务中的适用性
在电力无线通信专网建设中应用LTE230系统,需要明确业务特点。通常,在智能电网配用电侧,会同时存在小宽带与大宽带,其中小宽带最主要。此外,终端种类复杂,数量较多,分布分散,为满足实时性要求,必须对业务进行分级管理。在LTE230系统下存在SPE系列的高性能终端与LCM系列的低性能终端。其中,SPE可以在检修、抢修以及可视化管理等高速率的大带宽业务中应用,而LCM主要用于负荷控制、信息采集等低速率的小带宽业务。同时,LTE230系统可以支持超过2000个终端同时在线通信,是常规通信系统的5倍,可满足电力系统庞大的业务需求。LTE230系统也可以针对不同类型的电力业务进行分级管理,区别出不同业务之间的操作流程与顺序,提升业务处理效率。
4.3LTE230系统的传输速率
传统的数传电台230频段仅能使用单一的频段资源,效率低,最大速率仅为19.2kb/s,不能满足电力无线通信专网发展的实际需求。如果采取提高数据采集频率的形式来实现阶梯电价或分时电价,会导致电力系统的通信量大幅攀升,且若要进一步开发视频传输功能,数据传输速率至少要达到200kb/s才能满足业务需求,这是当前的电力无线通信专网无法实现的。而LTE230系统的频谱资源具有窄带离散与梳状无规则的分布特点。其基础是LTE核心技术,可将未连续分配的载波聚合,进而统一分配给电力用户,保证宽带传输效果J。此外,在LTE230系统应用过程中,可根据电力业务的不同,灵活选择聚合程度以及是否进行聚合,实现频段资源的高效利用。在LTE230系统中,电力无线通信专网的上下峰值可到15Mb/s和6Mb/s。
5结论
LTE230系统的覆盖范围大,且应用成本较低,能够有效满足人们对电力配网无线通信的需要,提升用电信息采集系统的承载能力。
参考文献:
[1]李金友,闰磊,齐欢,等.基于LTE230系统的电力无线通信专网研究与实践[J].电气技术,2014,15(1):132一l34.
[2]郭志华,薛晓慧,厉娜,等.配用电无线通信专网在复杂地理环境下的应用研究[J].电信科学,2015,31(5):165—172.
[3]吴文熠.TD-LTE230MHz在配电线路全项在线监测系统的应用[J].电力系统通信,2012,33(10):55.59.
转载请注明来自:http://www.lunwenhr.com/hrlwfw/hrkjlw/11177.html